Frequency Domain Optical Tomography Based on the Equation of Radiative Transfer

نویسندگان

  • Kui Ren
  • Guillaume Bal
  • Andreas H. Hielscher
چکیده

Optical tomography consists of reconstructing the spatial distribution of absorption and scattering properties of a medium from surface measurements of transmitted light intensities. Mathematically, this problem amounts to parameter identification for the equation of radiative transfer (ERT) with diffusion-type boundary measurements. Because they are posed in the phase-space, radiative transfer equations are quite challenging to solve computationally. Most past works have considered the steady-state ERT or the diffusion approximation of the ERT. In both cases, substantial cross-talk has been observed in the reconstruction of the absorption and scattering properties of inclusions. In this paper, we present an optical tomographic reconstruction algorithm based on the frequency-domain ERT. The inverse problem is formulated as a regularized least-squares minimization problem, in which the mismatch between forward model predictions and measurements is minimized. The ERT is discretized by using a discrete ordinates method for the directional variables and a finite volume method for the spatial variables. A limited-memory quasi-Newton algorithm is used to minimize the least-squares functional. Numerical simulations with synthetic data show that the cross-talk between the two optical parameters is significantly reduced in reconstructions based on frequency-domain data as compared to those based on steady-state data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss–Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation

The radiative transfer equation can be utilized in optical tomography in situations in which the more commonly applied diffusion approximation is not valid. In this paper, an image reconstruction method based on a frequency domain radiative transfer equation is developed. The approach is based on a total variation output regularized least squares method which is solved with a Gauss–Newton algor...

متن کامل

Ultrafast Radiative Transfer Characteristics in Multilayer Inhomogeneous 3d Media Subjected to a Collimated Short Square Pulse Train

The advent of ultrafast lasers has brought many new applications, in particular in biomedicines and material processing, such as laser tissue ablation (Huang and Guo, 2010; Jiao and Guo, 2011), laser tissue soldering and welding (Kim and Guo, 2004), protein shock (Sajjadi et al., 2013), thermal response (Jiao and Guo, 2009), and the detection of tumors by using an exogenous fl uorescence agent ...

متن کامل

Three-Dimensional Radiative Transfer Tomography for Turbid Media

The photon distribution, as a function of position, angle, and time, is computed using the analytical cumulant solution of the Boltzmann radiative transfer equation (RTE). A linear forward model for light propagation in turbid media for three-dimensional (3-D) optical tomography is formed based on this solution. The model can be used with time resolved, continuous wave (CW), and frequency-domai...

متن کامل

Utilizing the Radiative Transfer Equation in Optical Tomography

We propose a method which utilizes the radiative transfer equation in optical tomography. In this approach, the radiative transfer equation is used as light propagation model in those regions in which the assumptions of the diffusion theory are not valid and the diffusion approximation is used elsewhere. Both the radiative transfer equation and the diffusion approximation are numerically solved...

متن کامل

Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes.

In frequency-domain optical tomography (FDOT) the quality of the reconstruction result is affected by the choice of the source-modulation frequency. In general the accuracy of the reconstructed image should improve as the source-modulation frequency increases. However, this is only true for noise-free data. Experimental data is typically corrupted by noise and the accuracy is compromised. Assum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006